Rumusrumus.com kali ini akan membahas wacana pengertian dan rumus frekuensi keinginan matu dadu, logam, statistik beserta akan memberi rujukan soal dan jawabannya dari banyak sekali latar belakang dari frekuensi harapan.
Pengertian Frekuensi Harapan
Frekuensi keinginan adalah banyaknya pada suatu percobaan dikalikan dengan peluang pada suatu kejadian. Kaprikornus pada frekuensi keinginan yaitu menghitung berapa peluang pada suatu insiden dengan berkali kali melaksanakan percobaan, atau dapat juga di sebut sebagai uji experiment.
Frekuensi keinginan ini dapat di praktekan secara langsung, misalnya dengan melempar uang logam sebanyak 100 kali, kemudian hitung berapa banyak sisi gambar nominal pada uang logam dan berapa banyak sisi gambar sebaliknya selama seratus kali pelemparan tersebut, Setelah melaksanakan hal tersebut maka akan diketahui berapakah frekuensi keinginan untuk kedua sisi pada uang logam tersebut.
Rumus Frekuensi Harapan
Fh = n x P(A)
Keterangan :
- Fh : Frekuensi harapan
- P : Adalah Peluang
- A : Adalah Kejadian A (hanya lambang suatu kejadian)
- n : Adalah Banyaknya suatu percobaan
Contoh Soal
Contoh Soal 1
Tiga buah uang logam berisi gambar (Z) dan angka (A) Dilempar tolong-menolong sebanyak 80 kali. Tentukan keinginan munculnya tiga-tiganya angka ?
Jawab :
Untuk menyusun soal menyerupai ini pertama kali hitung dahulu banyaknya seluruh nilai kejadian, seluruh insiden di lambangkan dengan S, maka :
S = (ZZZ, ZZA, ZAZ, AZZ, AAZ, AZA, ZAA, ZZZ)
n (S) = 8
Dan untuk yang muncul tiga-tiganya A hanyalaH satu yaitu {AAA}. maka :
A = {AAA}
n (A) = 1
Banyaknya percobaan yaitu sebanyak 80 kali maka n = 80
Maka :
Fh = P(A) x n
Fh = ( n(A)/n(S) ) x n
Fh = (1/8) x 80
Fh = 10
Jadi keinginan munculnya tiga-tiganya angka yaitu sebanyak 10 kali.
Peluang Komplemen Suatu Kejadian
Peluang Komplemen pada suatu insiden A ditulis dengan P(AC)
Dimana :
P(A)+P(AC)=1 dan P(AC)= 1 – P(A)
Contoh :
Pada pelemparan 3 mata uang logam yang dilakukan dengan tempo waktu yang sama, tentukan berapa peluang munculnya paling sedikit 1 angka dari pelemparan uang logam itu?
Jawab :
Cara Biasa
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}, sehingga n(S) = 8
andai insiden muncul paling sedikit satu angka yaitu A.
A = {AAA, AAG, AGA, GAA, AGG, GAG, GGA}, maka n(A) = 7
P(A) = n(A)/n(S) =7/8
Cara Komplemen
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}, maka n(S) = 8
Misalkan insiden munculnya paling sedikit satu angka yaitu A.
AC = {GGG}, jadi n(AC) =1
P(AC) = n(AC)/n(S) =1/8
P(A) = 1 – P(Ac) = 1 – 1/8 = 7/8
Dengan memakai cara komplenen ataupun tidak maka hasilnyatetap akan menunjukkan poin yang sama.bebas memakai cara yang mana saja dikarenakan alhasil akan sama
Frekuensi Harapan Suatu Kejadian
Contoh :
Satu buah uang logam yang dilemparkan ke udara sebanyak 30 kali. Tentukan frekuensi keinginan munculnya pada sisi angka.
Jawab :
Misalkan, K ialah himpunan insiden munculnya sisi angka sehingga P(K) = ½.
Banyaknya pelemparan (n) yaitu 30 kali.
Maka, frekuensi keinginan munculnya sisi angka yaitu
Fh = P(K) × n
= ½ × 30x
= 15x
Kesimpulan
Jadi frekuensi keinginan ialah suatu frekuensi ataupun jumlah banyaknya percobaan yang dikalikan dengan peluang pada suatu insiden sampai menghasilkan banyaknya keinginan muncul pada suatu insiden tertentu.
Misalnya kau mengirimkan suatu kupon undian? pada suatu undian, Makin banyak kupon undian yang di kirimkan, keinginan untuk memenangkan undian tersebut pun semakin besar. Harapan untuk memenangkan undian pada matematika yang disebut dengan frekuensi harapan.
Demikianlah klarifikasi wacana rumus dan pengertian serta rujukan soal frekuensi harapan, biar bermanfaat…
Artikel Lainya :
Sumber https://rumusrumus.com